Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 381(6665): 1455-1461, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37769097

RESUMO

Fluorine is an increasingly common substituent in pharmaceuticals and agrochemicals because it improves the bioavailability and metabolic stability of organic molecules. Fluorinated gases represent intuitive building blocks for the late-stage installation of fluorinated groups, but they are generally overlooked because they require the use of specialized equipment. We report a general strategy for handling fluorinated gases as benchtop-stable solid reagents using metal-organic frameworks (MOFs). Gas-MOF reagents are prepared on gram-scale and used to facilitate fluorovinylation and fluoroalkylation reactions. Encapsulation of gas-MOF reagents within wax enables stable storage on the benchtop and controlled release into solution upon sonication, which represents a safer alternative to handling the gas directly. Furthermore, our approach enables high-throughput reaction development with these gases.

2.
Angew Chem Int Ed Engl ; 61(30): e202206718, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35579908

RESUMO

Carbon capture and sequestration (CCS) from industrial point sources and direct air capture are necessary to combat global climate change. A particular challenge faced by amine-based sorbents-the current leading technology-is poor stability towards O2 . Here, we demonstrate that CO2 chemisorption in γ-cylodextrin-based metal-organic frameworks (CD-MOFs) occurs via HCO3 - formation at nucleophilic OH- sites within the framework pores, rather than via previously proposed pathways. The new framework KHCO3 CD-MOF possesses rapid and high-capacity CO2 uptake, good thermal, oxidative, and cycling stabilities, and selective CO2 capture under mixed gas conditions. Because of its low cost and performance under realistic conditions, KHCO3 CD-MOF is a promising new platform for CCS. More broadly, our work demonstrates that the encapsulation of reactive OH- sites within a porous framework represents a potentially general strategy for the design of oxidation-resistant adsorbents for CO2 capture.

3.
J Mater Chem A Mater ; 35: 19698-19704, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34721878

RESUMO

The controlled introduction of defects into MOFs is a powerful strategy to induce new physiochemical properties and improve their performance for target applications. Herein, we present a new strategy for defect formation and amorphization of the canonical MOF-74 frameworks based on fine-tuning of adsorbate-framework interactions in the metal congener, hence introducing structural defects. Specifically, we demonstrate that controlled interactions between the MOF and bidentate ligands adsorbed in the pores initiates defect formation and eventual amorphization of the crystal. These structural features unlock properties that are otherwise absent in the ordered framework, such as broad-band fluorescence. The ability to introduce defects by adsorbate-framework interactions, coupled with the inherent tunability and modularity of these structures, provides a new route for the synthesis of diverse heterogeneous and hybrid materials.

4.
J Am Chem Soc ; 143(4): 1948-1958, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33492140

RESUMO

Fluoroarenes are widely used in medicinal, agricultural, and materials chemistry, and yet their production remains a critical challenge in organic synthesis. Indeed, the nearly identical physical properties of these vital building blocks hinders their purification by traditional methods, such as flash chromatography or distillation. As a result, the Balz-Schiemann reaction is currently employed to prepare fluoroarenes instead of more atom-economical C-H fluorination reactions, which produce inseparable mixtures of regioisomers. Herein, we propose an alternative solution to this problem: the purification of mixtures of fluoroarenes using metal-organic frameworks (MOFs). Specifically, we demonstrate that controlling the interaction of fluoroarenes with adjacent coordinatively unsaturated Mg2+ centers within a MOF enables the separation of fluoroarene mixtures with unparalleled selectivities. Liquid-phase multicomponent equilibrium adsorption data and breakthrough measurements coupled with van der Waals-corrected density functional theory calculations reveal that the materials Mg2(dobdc) (dobdc4- = 2,5-dioxidobenzene-1,4-dicarboxylate) and Mg2(m-dobdc) (m-dobdc4- = 2,4-dioxidobenzene-1,5-dicarboxylate) are capable of separating the difluorobenzene isomers from one another. Additionally, these frameworks facilitate the separations of fluoroanisoles, fluorotoluenes, and fluorochlorobenzenes. In addition to enabling currently unfeasible separations for the production of fluoroarenes, our results suggest that carefully controlling the interaction of isomers with not one but two strong binding sites within a MOF provides a general strategy for achieving challenging liquid-phase separations.


Assuntos
Complexos de Coordenação/química , Flúor/química , Magnésio/química , Estruturas Metalorgânicas/química , Adsorção , Misturas Complexas/química , Isomerismo , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...